John R. Anderson
Lynne M. Reder
Herbert A. Simon*
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213
ja@cmu.edu
reder@cmu.edu
Abstract
There is a frequent misperception that the move from behaviorism to cognitivism implied an abandonment of the possibilities of decomposing knowledge into its elements for purposes of study and decontextualizing these elements for purposes of instruction. We show that cognitivism does not imply outright rejection of decomposition and decontextualization. We critically analyze two movements which are based in part on this rejection--situated learning and constructivism. Situated learning commonly advocates practices that lead to overly specific learning outcomes while constructivism advocates very inefficient learning and assessment procedures. The modern information-processing approach in cognitive psychology would recommend careful analysis of the goals of instruction and thorough empirical study of the efficacy of instructional approaches.
Following on the so-called "cognitive revolution" in psychology that began in the 1960s, education, and particularly mathematics and science education, has been acquiring new insights from psychology, and new approaches and instructional techniques based on these insights. At the same time, cognitive psychologists have being paying increasing attention to education as an area of application of psychological knowledge and as a source of important research problems. There is every reason to believe that as research in cognitive psychology progresses and increasingly addresses itself to educational issues, even closer and more productive links can be formed between psychology and mathematics education.